Cable Sizing Application

Click here to register to use our cable sizing application

What Changed

So that we can focus all our efforts on our new application, we have retired our myElectrical.com cable sizing calculator. We recommend you now use our main cable sizing application over at myCableEngineering.com.

myCableEngineering.com

Cable Sizing Software - select, size and manage your power cables using myCableEngineering. All your cables, for all your projects.
  • LV and MV cables up to 33 kV with current capacity in accordance with BS 7671, ERA 69-30 and IEC 60502.
  • Positive and zero sequence impedance to IEC 60609. Voltage drop in accordance with CENELEC CLC/TR 50480.
  • Project management and team collaboration, with clear easy to read calculations and reports.

Our software is the only cloud-based solution and has been built from the ground up to be fully responsive - meaning you can access your cables from anywhere and on any device, desktop, tablet or smartphone.

Duct Size Calculator


Tip: registered users can save calculations.

Typical Cable Diameters

Following outside diameters are for reference only and will vary depending on cable manufacturer. 

600/1000V XLPE Armoured

Overall Diameter (mm)
mm2 1core  2 core  3 core  4 core 
1.5    12.3  12.8  13.5
2.5    13.6  14.1  15.0
4    14.7  15.3  16.4
6    16.9  16.6  18.7
10    18.0  19.5  21.1
16     20.0  21.2  22.9
25    24.1  26.7  28.9
35    27.9  29.6  32.1
50*   17.5  25.8  28.5  32.0
70   20.2  29.0  32.2  37.7
95   22.3  33.1  37.0  41.7
120   24.2  36.1  40.0  47.7
150   27.4  39.3  45.5  51.4
185  30.0  44.7  49.8  56.6
 240  32.8  49.0  55.1  63.0
300  35.6  53.5  60.2  68.8
400  40.4  59.0  66.6  78.1
500  44.2      
630  48.8      
800  55.4      
1000  60.6      

 * - change in class of conductor

Calculation

1. Required fill factor k (in decimal)
2. Cable diameter d, giving a cable area, a:

a= π 4 d 2
3. Cable total area Ca = sum of area for all cables
4. Minimum duct diameter D:

D= 4 C a πk

1,000 kV UHV First for China

At the beginning of the year China put the world's first 1,000 kV UHV transmission system into operation. Transmitting power at over a million volts is...

Motor Efficiency Classification

Electric motors are one of the most widely used items of electrical equipment. Improving motor efficiency benefits include, reduced power demand, lower...

ABB Technical Guides - Motor Operation

ABB has produced a range of technical guides that offer concise explanations of the major technologies and technical issues in low voltage AC drives. ...

Software Usage Guidelines

Using software in our  work is essential for most of us and we are becoming even more dependant on it's use.  While software is a great asset, many times...

How to refer fault levels across a transformer

Over the past year or so I've been involved in on going discussions related to referring fault levels from the secondary of a transformer to the primary...

Michael Faraday (the father of electrical engineering)

Famed English chemist and physicist Michael Faraday was born on September 22, 1791, in Newington Butts, a suburb of Surrey just south of the London Bridge...

Electric Motors

Collection of links to various places with useful motor information. I’ll try and return to the page every now and again to update it with any motor notes...

E-Ink

Before the technical, some general information. E-ink display are found in a lot of e-readers, some mobile phones and similar devices and the intent is...

Alternating Current Circuits

Alternating current (a.c.) is the backbone of modern electrical power distribution. In this article I’ll be pulling some of the more important concepts...

What is Aircraft Ground Power

Ever wondered what kind of power an aircraft uses when parked at the airport stand. Normally the aircraft generates it own power, but when parked with...