Cable Sizing Application

Click here to register to use our cable sizing application

What Changed

So that we can focus all our efforts on our new application, we have retired our myElectrical.com cable sizing calculator. We recommend you now use our main cable sizing application over at myCableEngineering.com.

myCableEngineering.com

Cable Sizing Software - select, size and manage your power cables using myCableEngineering. All your cables, for all your projects.
  • LV and MV cables up to 33 kV with current capacity in accordance with BS 7671, ERA 69-30 and IEC 60502.
  • Positive and zero sequence impedance to IEC 60609. Voltage drop in accordance with CENELEC CLC/TR 50480.
  • Project management and team collaboration, with clear easy to read calculations and reports.

Our software is the only cloud-based solution and has been built from the ground up to be fully responsive - meaning you can access your cables from anywhere and on any device, desktop, tablet or smartphone.

Duct Size Calculator


Tip: registered users can save calculations.

Typical Cable Diameters

Following outside diameters are for reference only and will vary depending on cable manufacturer. 

600/1000V XLPE Armoured

Overall Diameter (mm)
mm2 1core  2 core  3 core  4 core 
1.5    12.3  12.8  13.5
2.5    13.6  14.1  15.0
4    14.7  15.3  16.4
6    16.9  16.6  18.7
10    18.0  19.5  21.1
16     20.0  21.2  22.9
25    24.1  26.7  28.9
35    27.9  29.6  32.1
50*   17.5  25.8  28.5  32.0
70   20.2  29.0  32.2  37.7
95   22.3  33.1  37.0  41.7
120   24.2  36.1  40.0  47.7
150   27.4  39.3  45.5  51.4
185  30.0  44.7  49.8  56.6
 240  32.8  49.0  55.1  63.0
300  35.6  53.5  60.2  68.8
400  40.4  59.0  66.6  78.1
500  44.2      
630  48.8      
800  55.4      
1000  60.6      

 * - change in class of conductor

Calculation

1. Required fill factor k (in decimal)
2. Cable diameter d, giving a cable area, a:

a= π 4 d 2
3. Cable total area Ca = sum of area for all cables
4. Minimum duct diameter D:

D= 4 C a πk

Introduction to Current Transformers

Current transformers (CTs) are used to convert high level currents to a smaller more reasonable level for use as inputs to protection relays and metering...

Fault Calculation - Symmetrical Components

For unbalance conditions the calculation of fault currents is more complex. One method of dealing with this is symmetrical components. Using symmetrical...

Generation of a Sine Wave

A fundamental concept behind the operation of alternating current systems is that voltage and current waveforms will be sinusoidal – a Sine Wave. This...

Photovoltaic (PV) - Electrical Calculations

Photovoltaic (PV) cells (sometimes called solar cells) convert solar energy into electrical energy.  Every year more and more PV systems are installed...

Occam's Razor

I was reminded of Occam's Razor while reading a book. It's quite a simple principal of logic which has stood the test of time and is accepted as central...

What are you reading!

Reading is a bit of a hobby of mine and I"ve done a few off-topic posts in the past on this. Rather than continue doing the occasional post I thought ...

Thermoplastic and Thermosetting Insulation

While there are a vast array of cable insulation materials, these are often divided into two general types; Thermoplastic or Thermosetting. For example...

Generator Sizing & Operation Limits

When selecting a generator, there are inherent limits on the active and reactive power which can be delivered. Generators are normally sized for a certain...

Cable Sheath and Armour Loss

When sizing cables, the heat generated  by losses within any sheath or armour need to be evaluated. When significant, it becomes a factor to be considered...

How to Write an Electrical Note

Electrical notes are a collaborative collection of electrical engineering information and educational material. Any registered user can add content. ...